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A SELF-CONSISTENT METHOD FOR THE DESCRIPTION 

OF THE GENERALIZED CONDUCTIVITY 

OF HETEROGENEOUS SYSTEMS 

E. A. Mityushov and P. V. Gel'd UDC 537.311.3+536.212 

A generalization is presented of the self-consistent field method for the deter- 
mination of the effective conductivity of heterogeneous materials based on simul- 
taneous utilization of the field balance and flux equations. Generality of the 
approach being proposed and its relation to many formal solutions of the problem 
being discussed are illustrated. 

One of the promising paths to the improvement of the exploitational characteristics of 
articles is related to the extensive utilization and optimization of heterogeneous material 
properties that are often microinhomogeneous media with inhomogeneity dimensions signi- 
ficantly less than the characteristic quantities for the specimen or article. Many impor- 
tant physical properties of similar materials such, for instance, as the kinetic, magnetic, 
and dielectric, can be investigated theoretically from a single aspect because of the mathe- 
matical equivalence of their description. The problem of finding regularities of the change 
in the heterogeneous system characteristics being discussed has received the designation of 
the problem of generalized conductivity [i, 2] for which a number of fundamental generaliza- 
tions has been established in investigations (see [2], say). By virtue of the sufficient 
complexity of the problem all theknown solutions have been obtained under definite simpli- 
fying assumptions of a physical or mathematical nature whereupon the equivalence of the 
mathematical and physical models utilized in describing the generalized conductivity has 
often been lost. A generalization of the known self-consistent field method [3] is presen- 
ted below, that permits setting up a connection between solutions obtained under different 
assumptions, as well as a deeper comprehension of their physical meaning without relying 
here on a complex mathematical apparatus. 

The crux of the self-consistent field method in the establishment of effective hetero- 
geneous material characteristics is the equalization of the mean field in particles of a 
multiphase system placed alternately in a homogeneous medium with effective properties to 
a microscopic field. The field balance equation is the self-consistent condition (while 
the flux balance equation is satisfied automatically) in this method that has received 
extensive application in the description of statistical mixtures of particles of equally 
likely phases. Generalization of the result obtained in such a manner can be obtained 
because of the introduction of an additional conductivity parameter for the heterogeneous 
system with simultaneous utilization of the field and flux balance equations. 

To clarify the features of the method it is expedient first to examine the solution of 
an auxiliary problem on determining the characteristics of a uniform homogeneous medium in 
which upon placement of a single spherical inclusion with i-th phase conductivity o i and 
application of an external field <E> the field in the inclusion will agree with the mean 
in the corresponding phase in the heterogeneous system E~. We call this homogeneous system 
the comparison body and denote its conductivity by o c. 

Using the solution of the problem of polarization of a sphere in a homogeneous infinite 
field [4], and taking account of the mathematical equivalence of its description and that 
inherent to the problem under consideration, we obtain 

S. M. Kirov Ural Polytechnic Institute, Sverdlovsk. 
cheskii Zhurnal, Vol. 57, No. i, pp. 75-80, July, 1989. 
7, 1988. 

Translated from Inzhenerno-Fizi- 
Original article submitted January 

0022-0841/89/5701-0789512.50 �9 1990 Plenum Publishing Corporation 789 



E i -  3ae < E >. 
2% + ch 

( i )  

From the field balance conditions < E ) = z_.~chEk'~ ~ c h  = 1 �9 

for the particular case of a two-phase system there follows 

( E >  = 3 % c ~  ( E > +  3~cc2 ( g >  

or 

Then taking account of (i) 

3~cCl _}_ 3~cOz : 1. 

Here  c 1, c 2 a r e  volume c o n c e n t r a t i o n s  o f  t h e  h e t e r o g e n e o u s  sy s t em  p h ase  components .  

Tf i t  i s  assumed t h a t  t h e  p r o p e r t i e s  o f  t h e  co m p a r i so n  body a g r e e  w i t h  t h e  e f f e c t i v e  
( %  = z * ) ,  i . e . ,  i f  s p h e r i c a l  i n c l u s i o n s  p l a c e d  in  a medium w i t h  e f f e c t i v e  p r o p e r t i e s  a r e  
examined a t  once ,  t h e n  t h e  s e l f - c o n s i s t e n t  s o l u t i o n  o f  t h e  p rob lem o f  g e n e r a l i z e d  conduc-  
t i o n  o f  a t w o - p h a s e  s t a t i s t i c a l  s y s t e m  can be found  f rom (2 )  

(2) 

~, (2 -- 3cl) ~2 + (2 -- 3co) o 1 

4 " -}- 
/ 

~,,/ [(2 - -  3cl) ~2 +16(2 - -  3c~) ~]2 + ~1~22 (3)  + 

Formula (3) agrees with that obtained earlier by V. I. Odelevskii [5] for materials 
formed by isotropic and inextensible particles distributed statistically in a homogeneous 
matrix. This expression was first established by Bruggeman [3] and was then derived by a 
number of other authors [5-10] in connection with investigating the effective characteris- 
tics of heterogeneous systems. The relationship (3) is known in the domestic literature as 
the Kondorskii--Odelevskii formula [11-13]. It has been used successfully repeatedly in the 
description of diverse physical properties of hot-stamped metal powders [14, 15], solid 
porous materials, and dielectrics [13] as well as other systems [5, 7, 16]. As noted, a 
set of methods exists for the description of the effective characteristics of heterogeneous 
systems underlying which are different assumptions of both a physical and a purely mathemati- 
cal nature. Let us show that many of the solutions established by using them can easily be 
obtained by using the self-consistent method if the properties of the comparison body are 
here considered a variatable parameter. 

To do this we u s e  the flow balance condition <j>=cIjl+clj2 where Jl and J2 are mean 
values of the flow over the volume of the appropriate phase component in the heterogeneous 
system. In a form equivalent to this equality we can write 

o * (  E > = ~ I c l E I + ~ 2 c l E  2. 

Substitution of the values of the field intensity E~ in the phases determined by the rela- 
tionship (I) into this expression yields 

O'*" (E > ~ 3~ [ 20'o(71C1 ~--~- ([1 (72C2 I <E) 2(Yc ~ (72 
or 

cqc~ 4 ~2c~ 1" (4) 
~*=-3~  ~ 2~c+~1 2%-ko"2 

Let us execute an identical transformation in (4) by introducing the mean value of the 
conductivity of a two-phase system <a> = clo I + clo 2 into the consideration. Then 

(2~c + ~)(2~o + ~.,) 
or taking the relationship (2) into account 
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(r ~ . . . .  2% < ~ ) + ~Icr.., 

Finally, adding and subtracting the value of the mean conductivity <o> in the right 
side of this expression, we obtain 

~,  = < ~ > _ c~c~(~, - - ~ ) ~  (5) 

It is important that the solution presented agrees exactly with the formula obtained 
within the framework of the generalized singular approximation [17] or the method of renor- 
malization [18-20], where the effective characteristics of a heterogeneous medium are found 
from the solution of an integrodifferential equation with kernels containing the second 
derivatives of the Green's functions of the Laplace equation. The crux of these methods is 
the representation of the second derivative of the Green's function as the sum of formal and 
singular parts and utilization of only the latter in the subsequent computations. In pas- 
sing, let us note that extraction of the singular component in the kernel of the appropriate 
integrodifferential equation is equivalent to separating an interaction into local and non- 
local components. 

Representation of the effective conductivity of heterogeneous systems by using (5) con- 
taining the variatable parameter o c permits description of the characteristics of two-phase 
materials of arbitrary structure. Thus, setting the conductivity of the comparison body 
equal to o c = ~ and o c = 0 we find the upper and lower bounds of the effective conductivity 
values for fixed properties of the phase components of systems [21]: <~-I>-I~o*~<o>, cor- 
responding to models of a material with parallel and sequentially arranged structural ele- 
ments. 

Narrower variational conductivity boundaries established by Hashin and Shtrikman [22] 
that agree with those calculated by the Maxwell formula for matrix systems [i, 23] are found 
if the conductivities of the comparison body are taken equal to o c = 01 and o c = 02 . In 
this case 

< ~ > _ c~c~(~, - -  ~)~ ..~ ~ .  <~ < ~ > _ "c,c~ (~, - -  ~)~ , ~ > ~ .  

If it is considered that o c = <o>, then the expression for the effective conductivity 
turns out to be identical to the solution obtained under the condition of limiting locality 
[24] when the correlation function of the physical properties of a microinhomogeneous medium 
is described by the Dirac 6-function. 

Moreover, it agrees also with the solution obtained when using the hypothesis of strong 
isotropy [25], when it is considered that the pairwise correlation functions of the physical 
properties are determined only by the distances between points in the heterogeneous system 
and are independent of the orientation of the segment connecting them. Finally, this same 
result was also obtained by the method of conditional moments [26, 27] as well as by using 
perturbation theory [28]. The identity of the solutions obtained by the methods enumerated 
indicates the equivalence of the models and constraints utilized in their derivation. There- 
fore, these hypotheses are formal in nature and do not reflect all the specific singulari- 
ties of the heterogeneous system. 

The selection of o c = <o> and o c = <o-i> -i also permits setting up two boundaries for 
the effective conductivity 

< ~ > c~c~ ( ~  - -  ~)~ <~ ~ ,  <~ < ~ > c~c~ ( ~  - -  ~ )~  , 

2 < ~-~ > -~ § c~% § c2~ 2 < ~ > + c ~  -{- c ~  

that are included within the Hashin--Shtrikman boundary. 

Attention is turned to the fact that the expressions presented above for the range 
of possible values of the conductivity turn out to be symmetric in the subscripts denoting 
the system phase components. It should consequently be expected that the value of the effec- 
tive conductivity of an arbitrary two-phase statistical system lies within the boundaries 
set up by this relationship while the effective conductivity of a matrix system can emerge 
beyond the mentioned boundaries while remaining, however, within the Hashin--Shtrikman boun- 
daries [29]. 
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Fig. i. Dependence of the effec- 
tive conductivity on the concen- 
tration of the first phase c I for 
oi/% = i00 and different charac- 
teristics of the comparison body: 
i) o c = 0; 2) o c = ~; 3) o c = 02; 
4) 0 c = oi; 5) o c = <o-i>-I; 6) 

o c = <0>; 7) o c = o*. 

Finally setting o c = o* into (5), we arrive, as should have been expected, at the self- 
consistent solution (3). It hence follows that for different geometric models of hetero- 
geneous systems appropriate characteristics of the comparison body can be chosen for which 
the dependence (5) will describe their effective conductivity in the best manner in the 
whole range of phase component concentrations. 

Presented as an illustration in the figure are dependences of the effective conductiv- 
ity of a two-phase heterogeneous system on the bulk content of the first phase component 
set up in conformity with (5) for different characteristics of the comparison body. Atten- 
tion is turned to the dependence of the conductivity on the bulk content of the first phase 
c I (curve 7) obtained for a statistical system with equally likely phase components (o c = 
0*). For a small bulk concentration of the first phase, when this equal-likelihood is not 
manifest, the computed values are close to the corresponding ones for a system of matrix 
type (curve 3). Conversely, as c I + i, when tbe first phase component evidently becomes a 
matrix one, the concentration dependence 7 approaches the curve 4. 

In real cases when the object under discussion has a complex structure and it is diffi- 
cult to refer it to any class of heterogeneous materials, the characteristic of the compari- 
son medium can be utilized as an adjustment parameter by defining it by the value found 
experimentally for the effective conductivity in conformity with (5) for a fixed value of 
the concentration by using the expression 

~ c~ (~ --,~W 1 (c~% + c~). 
(~C - - -  2(<,~ >--,7) 2 

Here o is the value determined experimentally for the specific conductivity, c z and c 2 are 
the bulk concentrations of the phase component corresponding to this value. 

Generalization of the self-consistent field method can be realized by an analogous 
method in the case of two-dimensional systems (for instance, for fibrous or film structures). 
Then the relation between the local field in a circular inclusion and the macroscopic field 
acquires the form [4] 

2qe E~= - - < E > .  

Consequently, it is easy to obtain a solution analogous to that presented above 

This result agrees with that obtained by other methods in [17, 18]. 

NOTATION 

E, electrical field intensity vector; j, current density vector; Oc, specific electri- 
cal conductivity of the comparison body; 0*, effective electrical conductivity of the 
heterogeneous material; and ci, bulk content of the i-th phase. 

i. 
2. 
3. 
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